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AbstmeL This paper describes the properiies of a Uneric formula derived f” a 
differential equation based on a time-domain induction mechanism reminiant of that 
encountered in BossEinstein statistics. d(i i /n) /dt  = -ait/n + D(k/n)*, wilh n 
denoting the lelaxing quantity and i z  its time derivative. While, as show earlier, the 
corresponding equation without the nonnaliution ot h with regard to n produced an 
aponential dat ion between ii and n, a generalized paver law is obtained in the present 
m e .  As in the former case lhe distribution of relaxation times is discrete, the spectral 
lines being integer-valued [Tactions of a fundamental time constant. 

1. Intmduction 

This paper is part of a series of communications exploring the potential of kinetic 
formulae based on the time-domain version of a Bose-Einstein (BE) distribution. 
After a brief review of the properties of a direct equivalent of a BE formula, yielding 
the rate of change of the relaxing quantity as a function of time, we present a modified 
equation, where the rate is normalized with regard to the number of flow entities yet 
to undergo transition to the relaxed state. It will be demonstrated that, while the 
first formula yields a so-called exponential law (or logarithmic time law), the second 
one yields a power law often found in experiments. Before proceeding, some limiting 
types of transient Row in solids, such as primaly creep, stress relaxation and physical 
aging, will be briefly defined. With regard to the concept of ‘flow units’ as normally 
done, we assume the macroscopic process to consist of a number of transitions of such 
units from the initial to the relaxed state, without specifying their exact character. 

Formally, when interpreted in spectral terms, transient flow in solids is charac- 
tcrized by relatively broad distributions of relaxation times, 7. Often a box-type 
distribution of log7 provides a fair description of experimental facts. In essence, 
this amounts to saying that the quantity in question varies linearly with log time, t, 
this being referred to as the logarithmic time law 111. Apart from using a box-type 
r spectrum, one obtains the log t law starting from an exponential relation between 
the rate of change of the quantity being measured and the quantity itself. 

For stress relaxation, for instance, one arrives at the relation [I] 

(r = - A e  XP ( ../I.BT) (1) 
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with U denoting the stress, ir = du/dt ,  z) a volume (of activation), k,T the thermal 
energy and A a constant. This equation has the obvious physical appeal of being 
directly obtainable from the BolQmann factor, assuming that the energy of activation 
of the flow units involved in the process decreases with the energy stored locally due 
to the applied stress. In order to achieve ir - 0 for U - 0, one has to consider 
flow in the opposite direction. This yields a s inh(vu/kT) dependence, which, for 
all practical purposes, can be approximated by equation (I), however. 

Apart from the above equation, expressing the idea of stress-dependent thermal 
activation (SDTA), and the concept of relaxation-time spectra (RTS), the so-called 
stretched exponential (Kohlrausch-Williams-Watts or KwW function) 

D G Kublit d a! 

U = uo exp I-( t / ~ ) ~ ]  (2) 

has been used frequently to describe the kinetics of flow, dielectric response, aging, 
etc 12, 31. Again, equation (2) describes a process extending over a broader time 
range than that which would correspond to an unmodified exponential, provided that 
N < 1. It may be noted that a physically plausible derivation of equation (2) is 
associated with major difficulties [4]. 

An important quantity characterizing a relaxation process is the slope of the 
inflection region defined as F = -(do/d In t )mu.  A straight line through the 
inflection point cuts the u(t  = 0) and o(l - 00) lines at 1, and t,,  respectively, as 
shown in figure 1. The straight-line approximation of the process leads to 

(To - U, = F l n ( l , / t o )  (3) 

where U,, has been corrected with regard to U,, i.e. the stress remaining when 
1 - 0 0 ,  

It has been amply demonstrated that for solids of various structure and composi- 
tion 

F = (0.1 * O.O1)(crO - U-) (4) 

showing that the extension of the stress relaxation curves in the straight-line approxi- 
mation is about four decades (4.3) of time 111. Similar values have been reported for 
primary creep and physical aging of polymers [2]. In both cases, equation (4) applies 
at temperatures that are not too close to a thermal transition region [l]. %anslated 
to the KWW function, equation (4) implies a E 0.27(= e/lO), which is close to the 
values of about ID to 1/4 found experimentally [2]. We mention the general validity 
of equation (4) in order to support the notion that the kinetics of the processes in 
question are largely independent of structural details of the solid under study [SI. 
Projected c.:to the SDTA theory, equation (4) yields z) = 10kBT/uo, which certainly 
contradicts the numerous attempts in the past to correlate the activation volume with 
specific structural features. For details of the topics discussed above the reader is 
referred to a review published earlier 111. 

2. The Bose-Einstein-like cooperative model 

It is generally accepted that interactions between the elementary flow units and their 
transitions to the relaxed state play an important role in the present context [5]. 
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However, there are considerable difficulties associated with a proper theoretical de- 
scription of such a situation, especially since the nature of the elementary processes 
and the structural units they involve are not known. A simple model making use 
of a mechanism similar to that underlying BoseEinstein (BE) statistics has been 
shown earlier to reproduce the basic features of relaxation processes in solids [HI 
as depicted by the SDTA approach. The essence of the method is the replacement of 
exp(-kt) by 

U = -ICF/(Aek' - 1) 

U = -kF(eUlF - 1). 

(5) 

which is equivalent to 

(6) 

Here F is the slope of the inflection region, as given above, IC denotes the inverse 
of the relaxation time 7 ,  and A = 1 + e, with E < 1. Under certain simplifying 
conditions integration of equation (5) yields 

U = uo - F!n[l - ( U o / k F ) ( l  -e-kc)] .  (7) 

h e  note that this model produces the same exponential U(u) dependence as the 
SDTA concept. In addition, the difliculty of applying the exponential U( U )  variation 
according to SDm to the well documented linear scaling with regard to uo = u(t = 0) 
is avoided here [l]. For kt << 1, we obtain the logarithmic time law. Details of this 
approach can be found in [a]. It is to be emphasized that the BE type modification 
of the usual ex]>(-t/r)  exponential uses the concept of a single relaxation time in 
its original intent. 

A distinct advantage of using a formula such as equation (5) is the simplicity of 
the underlying cooperative mechanism, especially when considering the differential 
equation from which equation (5) can be obtained [ I l l .  

ii = -ah + bh2 = - a l i [ l -  (b/a)k].  (8) 

Here, n, iz and ii denote the relaxing quantity (number of unrelaxed entities consti- 
tuting the macroscopic process) and its first and second time derivatives. Equation (8) 
depicts a global induction mechanism fitting the picture of a consolidating dense Struc- 
ture naturally. Contrary to the features of common interacting systems such as, for 
instance, the Ising lattice [9], the factor determining the rate is not the number of un- 
relaxed units. Instead, the induction factor is a linear function of the rate itself. From 
a physical p i n t  of view it is natural to imagine that the movement of a structural 
unit facilitates simultaneous movement of other units in its vicinity. The cooperative 
mechanism is thus resiricted to the time interval being considered. The concept of 
free volume [Z] and its central role in processes of the type under discussion may 
provide a physically tangible illustration. 

The induction mechanism inherent in the concept of BE-like statistics, implying 
that the probability of a unit's transition to the unrelaxed state is linearly dependent 
on the number of other transitions taking place simultaneously, certainly has an 
element of physical appeal. In spite of this, its potential has not been appreciated by 
workers active in this field, who seem to favour physically elusive notions like that of 
the KWW function mentioned above. 
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The potential of the BE-like mechanism discussed in earlier papers [U] is not, 
as it may seem, exhausted by the shift from e x p ( - k t )  to equation (5). The reason 
is that the differential equation yielding this shift can be modified in a number of 
ways. In the next section, we discuss the properties of the solutions of equation (8) in 
which the rate h has been replaced by the rate density h / n  relative to the number of 
unrelaxed entities. It  will be shown that a generalized power-law type h ( n )  relation 
emerges from such a modification. As is well known, the power law is extensively used 
as a method of describing flow kinetics in solids [I]. In polyethylene, for instance, 
the initial part of the stress relaxation process appears to follow an exponential u(a) 
relation, while a power law fits the final stage [IO]. 

3. Modified cooperative model 

We now consider the following modification of the basic differential equation (S), 

where p is a constant, and where the induction term does not comprise but the 
ratio ri /n. ,  that is the rate density with regard to the number of unrelaxed units, n. 
An obvious advantage of using n / n  is the scale invariance of the resulting equations. 
Equation (9) is identical with 

which provides an even simpler picture of the underlying induction mechanism. 
Equations (9) and (IO) can be integrated to provide relations between the quan- 

tities ?i, n and t .  Owing to the similarity of equations (8) and (10) we obtain for 
i ? ( t )  

with B = ( 1  - nn,/,l?n,). Normally -nn , / j3no  e: 1. In the following, the notation 
B = 1 f c will be used. For t 3 00, the rate h (negative) falls to zero. Integration 
of equation (11) gives for n( t ) ,  

This equation also defines the quantity n,, i.e. the number of unrelaxed units as 
t ‘ 0 3 ,  

ii = -ah + ( p  + 1)h2/n = - R ~ ( I -  [ ( p  + l ) / n ] h / n )  (9) 

d(r i /n) /d f  = -nn/n f P(h/n) ’  (10) 

n = -an/[@( Be”‘ - I ) ]  (11)  

n ( t )  = n,[ (B-  l ) / (B-e-at ) ] l /@.  (12) 

n,/n, = [( B - l)/B]”@. (13) 
As a n  be seen, n, disappears only for B = 1, implying nno/pli, -+ 0. On the 
other hand, equation (11) for h ( t )  then becomes divergent. In principle, n ,  can be 
kept at negligible levels for B sufficiently close to 1. 

A distinctive property of equations (9) and (IO) is the power-law dependence of 
ii on n, as’ expressed by the relation 

This relation can be recast in the form 
h / n  = n / O  + (no /no  - n/P)(n/n,)@. (14) 

fi = ( f i /P)nP - (n/n,)@] (15) 

n = no(n/no)@+le-ai. (16) 

showing that h approaches zero for n -+ n,. The power-law character of h(n) is 
also evident from 
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3.1. The shape of the n(bg t )  curves 

In this section we analyse the main parameters determining the slope of the n(logt)  
curves and their position along the log time axis. As already mentioned, equation (12) 
yields relaxation curves with finite Mlues of n,, cf equation (13). The magnitude of 
71, can be brought down to arbitrarily low levels by letting B - 1. However, the 
7%- value is coupled to the position of the n(ln 1 )  curves along In t. Decreasing 6 in 
B = 1 4- c implies a shift of the inflection region of the curves towards shorter times. 

When characterizing the shape and position of the n(1n t) curves, the following 
parameters are of special interest: the slope F of the inflection region (point) of 
such curves, and the two intercepts of a straight line tangent to the inflection with 
no and n,. These latter two quantities are denoted to and t,, respectively. Since in 
the present case nm may assume values different from zero, we also have to consider 
the corresponding intercept with n = 0, denoted t i .  These definitions are clarified 
in figure 1. 

FIgure L Relaxation curves plolted as nlno 
versus In(ai)  for p = 2 and wrying 6 (= 

ar B - 1 ) :  (a) e = (b) (c) - 'I' \ ! \ I ":. 1 ( d )  0.1 and 1d 1.0. The comesDondine 

The equations defining the slope F and the intercepts to ,  t, and t; cannot be 
rclated to the parameters a and p of equation (10) in an explicit form. This applies 
also to the parameter B (= 1 + e )  entering the integrated equations (11) and (12). 
However, for B and p values that lead to n(ln t )  curve shapes consistent with 
experimental facts, the errors incurred in the following approximations are practically 
negligible. 

Let  us denote the time at the inflection p i n t  by ti and introduce the variable 
z = ati. The value of ati is then calculated from the equation 

x/0 + 1 = B ( l  - z)e" (17) 

giving 

ln(at i )  Y 1x1 e + In - e ( p 2 / 2  - I )  (18) 

where, for not too high values of p, the last term on the right-hand side can be 
neglected, resulting in the following approximate relation 

Qti IT €0. (19) 
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A straight line tangent to the inflection point of n(ln f )  produces the intercepts to  
and 1 ,  with the In t axis at no and n,, respectively. Omitting calculational details 
we show only the final expressions for fo and t,: 

D G Kublit et ul 

I n ( a t o ) - I n ( c P ) - t ( l + P )  [1-(1 tP) ' lP ]  (20) 

~ n ( a t , )  = I ~ ( < P )  + ( I  + P) (1 - [ € ( I  +P)I'/@}. 

and 

(21) 

The extension of the n(ln 1 )  curves along the In t axis expressed in terms of the 
straight line approximation is then found to he 

In( t l / tn )  T (1 + @)'+'/@(I - e ' / @ ) .  (22) 

The first term on the right-hand side defines the inflection slope, the second is a 
correction factor reducing the value of ln( t , / to)  due to a finite R, level. As evident 
[mm equation (13), 

(23) n,/no = e ' / @  

for sufficiently small 6 ,  i.e. c < 1. 

Figure 2. Relaxation culves plolled as ./no 
Venus In(o1) for p = G and varying c: (0) 

0.8 i = IO-I ' ,  (b) (c) IOb6, (d) 
and (e) 1.0. n e  I i i ( t ! / l ~ )  mlios are: 9.61, 
9.41, 871, 5.34 and 3.03, wspectively. 

0,. - - 
. 

I~(.IJ 

The parameter Fln,,  central in this context with regard to its experimental 
background, cf equation (4), is given by 

(24) F / n o  = ( 1  + P I - (  ltl/@) 

an expression independent of n,. Relating F instead to no - n, one obtains 

(25) F / ( n ,  - n,) U ( 1  + o)-(l+l'p)(l - E ' / @ ) - ' .  

Referring to the experimental fact that F / ( u ,  - U,) 
from equation (24) that 

0.1, equation (4), we find 
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Figure 3. Relaxalion curyes plotled as nlno 
vepus In(at) (or p = 12 and w y i n g  t: (U) 
6 = IO-", (b) IO-' and (c )  The 
l n ( t l / t o )  raliosare: 15.00, 13.24 and ll.01. 

I"1.tl respectively. 

Here we have to note that the truncation of the n(1n 1) curves as reflected by the 
€containing term in equation (25) does not appear to represent a physical situation. 
When comparing equation (4) with the above results, we thus have U, consider no as 
the equivalent of U - U,. 

Although it is possible to work with both a negative and a positive sign in front 
of the rate constant a in equation (lo), we have limited the above discussion to t h e  
former case, since this produces n(ln 1) curves falling monotonically with time, while 
the other alternative gives curves with two inflections. 

The above conclusions pertaining to the shape of the n(ln t )  curves are supple- 
mented in graphical form in figures 1-3, showing the course of n(ln t), normalized 
with regard to no, for different values of p and E. As can be seen, the slope of the 
curves is determined by p only, provided that E is suficiently small. The n, level 
evident from figures 1-3 depends strongly on E, at least for the values chosen here. 
Also, for very small E the n,/n, level may reach significant values since it is given 
by the 1 / p  power of E, cf equation (23). The normalized slope F/n, depends only 
on 0, while F normalized with regard to no - n, depends on the n, level and, 
consequently, on E. 

A particular feature of the diagrams of figures 1-3 is a tail at long times, remi- 
niscent of corresponding curves based on a power law or a stretched exponential, as 
discussed below. Depending on the values of the parameters @ and E, this tail may 
be more or less pronounced. This also affects the extension of the rectilinear n( ln  t )  
portion, corresponding to the exponential law, equation (6). 

Another graphical supplement is figure 4, showing the variation of In ( t l / t o )  
with p for several 6 (= -ano/PiLo) values. As in figures 1-3 above, t ,  relates to 
n,, which makes In(tl / to) dependent on E. The same applies to F / (no  - n-), 
while F/no or In(tl / io) are largely independent of e, provided that its values are 
suifciently small. Figure 4 shows that the experimentally verified ratio F/n, Y 0.1, 
equation (4), requires _U 6 (n, assumed to be negligible). In fact, this p value 
gives F/n, = 0.103, cf equation (24). 

In order to attain a given value of In(tl/to), 1, relating to n,, E has to be 
suficiently small. For instance, In(t/ to) = 10 cannot be attained for E = B - 1 = 

even when the range of p d u e s  is extended to 100, since the corresponding 
curve in figure 4 levels off asymptotically. Fbr finite values of n, the value of 
[;l corresponding to a given logarithmic ratio of t , / to  as given, for instance, by 
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l" l ! , t t0l  

Y -  

............................... .. 

..,...,.., l.".l .................. 

Fk- 5. 7 h e  variation of I n ( t , / f o )  with 
P for an extended range of p values; e a s  

00 ;o io lo lo lo m m m 4. Im in 4, 

equation (22), depends on c. This is illustrated in figure 5 where the 0 range has 
been significantly extended. 

The 1n(tl/to) versus p data reproduced in figures 4 and 5 are the results of exact 
computer calculations. Compared with this, the approximation (22) above is highly 
accurate, since no difference between the two sets of results can be found within the 
range covered in the above illustrations. 

3.2 Specfral propenies of n ( 1 )  and fi ( t ) 

Relaxation processes are often described in terms of a spectrum of relaxation times, 
starting from the notion of a linear superposition of time exponentials. In the contin- 
uous case, the spectrum is obtained as the inverse Laplace transform of the relaxation 
function [I]. 

In a previous paper Ill] elucidating the properties of the relaxation function based 
on equation (S), we demonstrated that the corresponding spectral distribution of T 

is discrete for both n(1) and f i ( t ) .  In the present case, when basing the calculations 
on the modified equation (lo), the structure of the T spectrum is similar. 

Also, in this case, the n ( t )  and it(i) functions can be expressed in a unique way 
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0 16, . I 

Feure 7. Discrele dislribulion of ielaxalion 
times for n(t); L = P = 6; d equa- 
tion (29). 

as sums of exponentials, Le. 

m 

and 
m 

where the summation is over integer-valued k. The normalized spectral intensities P 
and p arc given by the following expressions (E P = E p = 1 ) 

1 
P ( , ~ )  = r ( i / p+  k) [r(i /p)r(k+ 1 ) ~ k l - l  [ ( B / ( B -  I ) ) ] /@ - 11- (29) 
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.,".U 

Figmm 8, Discrete distribution of relaxation 
t i m e  for h(t); t = lo-'", p = 6; d 
equation (30). 

1 0.1 0,. 
Figure 9. Discrete distriburion of relaxation 

o.6 ai o,p I times for ii(1); f = IOR. p = 6 ;  cf equa- 
tion (30). 

7 
... 

The discrete structure of the 7 spectra is illustrated in figures 6-9. Figures 6 and 7 
show the distribution P ( r )  for n(1) at 1 = 0 for B = 1 + and 1 + 
respectively. Figures 8 and 9 show the corresponding spectra p ( r )  for iL (1) .  The 
value of p is 6 in all the diagrams. The intensity of the spectral lines is shown by the 
vertical full lines. For graphical reasons, lines for a r  < 0.1 cannot be included; their 
intensity follows from the envelope showing the shape of the spectrum. 

4. Final remarks 

The present model can be considered as a generalization of the model described 
by equation (8) above and discussed earlier [GS, 111. The basic idea behind both 
models k reminiscent of that underlying BE statistics, although in the present case 
adapted to a time sequence of events believed to mimic the Row of condensed matter. 
This is expressed by equations (8) and (lo), stating that the change in flow rate is 
proportional to the flow rate times an induction factor linearly dependent on the rate. 
In other words, this is the well h o w n  attraction of objects or events typical of BE 
statistics. In the present case, however, we do not distribute particles on energy levels, 
but events along a time scale according to a largely equivalent statistical mechanism, 
thus producing an h ( t )  dependence typical of such a mechanism. 
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Basically, the interaction introduced here replaces the e x p ( - a l )  variation char- 
acteristic of indepcndent events with l / [ B e x p ( a t )  - 11, cf equation (11). The 
parameter B entering the denominator of that equation ensures that divergence is 
avoided at 1 -t 0. In conventional quantum statistics the numerator of equations such 
as (11) for h(1) gives the number of cells in the phase space available at a particular 
energy level. In equations of the present type the situation is similar. While in the 
simple model presented earlier [MI this number was constant along the time axis, 
we now have an/P as the value of the numerator. From a physical point of view, 
this appears to represent a plausible situation where the events taking place within 
a given time interval are clustered around a fraction of events taking place sponta- 
neously during the same time interval. Especially interesting is the fact that the value 
of this fraction is 1 / 6 (p  = Ci), reproducing rather accurately the value of the F / n ,  
ratio found in experiments, equations (4) and (26). 

A feature of the present model that should be especially emphasized is its ability 
to unify in a single formula the characteristics of the exponential and power laws 
of flow. While retaining a rectilinear portion of the n(log1) curves from which the 
inflection slope important for comparison with experiments can be extracted, we also 
have a long tail at longer times, which can be identified as originating from a power 
law relating iE and n.  In fact, it has been reported that experimental u(log t )  curves 
exhibit an exponential region in the initial stage of the process, followed by a power 
law at longer times [IO]. For metals, this has been interpreted in terms of a constant 
density of mobile dislocations during the initial stage, and a density diminishing with 
time as the process proceeds. The power-law character of equation (14) for n ( n )  is 
clcarly evident, although in this case this function is a sum of a linear iE(n) term and 
a term containing n p .  However, equation (14) can be recast into the form 

r i / n  = ~ / B ~ - ( l / t ~ ) ( n / n , , ) @  (31) 

where T = l / n ,  and ti is the inflection time. As discussed above, ti << T.  This leads 
to the approximation 

or 

- n E AnPt1 .  (33) 

Consider now the usual expression for a power-law-type stress relaxation, i.e. 

- (r = B(u - U,)” (34) 

where U, denotes the stress as 1 i 00 (internal stress). 
normalized inflection slope is given by 

As easily s h m ,  the 

F / ( u o  - U,) = v y ’ ( 1 - U ) .  (35) 

Replacing v by (3 + 1 we recover our expression (24) for F/n3, thus demonstrating 
the equivalence of the approximation (24) of our model and the power law. For 
natural reasons this equivalence applies only to n41n t )  curves with a negligible n, 
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level. When nm becomes b i t e ,  the final stage of the C U N ~ S  is truncated and does 
not depict a fully developed power-law process, cf figures 1-3. 

In concluding we note that, for complete relaxation, not only is the value of p E 6 
in agreement with the empirical finding expressed by equation (4), it also fits well into 
the exponent range found when applying the power law to both stress relaxation and 
creep. We thus find that the exponents of the power law provide another independent 
support for the similarity of flow of different solids as expressed by equation (4). It 
may finally be pointed out that the model presented above allows the power law to 
be interpreted in a novel fashion starting from a model of unusual simplicity. 

D G Kubtit et a1 
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